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Abstract

We describe a fast solver for the inhomogeneous heat equation in free space, following the time evolution of the solution
in the Fourier domain. It relies on a recently developed spectral approximation of the free-space heat kernel coupled with
the non-uniform fast Fourier transform. Unlike finite difference and finite element techniques, there is no need for artificial
boundary conditions on a finite computational domain. The method is explicit, unconditionally stable, and requires an
amount of work of the order OðNM log NÞ, where N is the number of discretization points in physical space and M is
the number of time steps. We refer to the approach as the fast recursive marching (FRM) method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The solution of the heat equation (the diffusion equation) in free space or in unbounded regions arises as a
modeling task in a variety of engineering, scientific, and financial applications. While the most commonly used
approaches are based on finite difference (FD) and finite element (FE) methods, these must be coupled to arti-
ficial (non-reflecting) boundary conditions imposed on a finite computational domain in order to simulate the
effect of diffusion into an infinite medium. These boundary conditions are discussed, for example, in [5,14–17].
Here, we describe a mathematically much more straightforward approach, which we will refer to as the fast
recursive marching (FRM) method. It is based on evaluating the exact solution of the governing equation,
using convolution in space and time with the free-space Green’s function. One advantage of this approach
is that essentially no convergence theory is required. The error in the solution is simply the quadrature error
in evaluating the solution. In the present paper, we restrict our attention to the simplest setting, namely the
isotropic inhomogeneous heat equation in Rd :
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in the absence of physical boundaries, subject to the initial condition
Uðx; 0Þ ¼ U 0ðxÞ; x 2 Rd : ð2Þ

The functions f ðx; tÞ and U 0ðxÞ are assumed to be compactly supported in the box B ¼ ½�R=2;R=2�d , centered
at the origin. We also assume that f ðx; tÞ and U 0ðxÞ are k-times differentiable: f ðx; tÞ 2 CkðB� ½0; T �Þ and
U 0ðxÞ 2 CkðBÞ. In subsequent works we will consider complex geometry and discontinuous data.

From standard potential theory [13,23], the solution can be written as
Uðx; tÞ ¼
Z

Rd
k x� y; tð ÞU 0ðyÞ dyþ

Z t

0

Z
Rd

kðx� y; t � sÞf ðy; sÞ dy ds; ð3Þ
where the fundamental solution for the heat equation in Rd is
kðx; tÞ :¼ e�kxk
2=4t

ð4ptÞ
d
2

; t > 0: ð4Þ
We will refer to the first integral in (3) as an initial potential and the second integral as a volume potential.
There is a substantial literature on Green’s function methods for problems of diffusion (see for example [3]).
However, straightforward discretization of the above integrals leads to an enormously expensive numerical
scheme – the solution is dependent on the full space–time history of the diffusion process. With N points in
the discretization of the domain and M time steps, it is easy to see that OðN 2M þ N 2M2Þ work is required.
Thus, the obvious advantages of the approach (stability, robustness, and the correctness of the far-field behav-
ior) appear to be overwhelmed by the problems of cost.

In recent years, however, several fast algorithms have been developed [10–12,26] that lead to nearly optimal
schemes, for which the work required is OðMN log NÞ. Related methods can be found in [18,20,27]. They
involve a fairly substantial amount of numerical and analytic machinery. In the present context, where we
need to evaluate volume potentials with smooth data, a simpler method can be developed based entirely on
the continuous Fourier transform. After outlining the algorithm itself, we illustrate its performance with some
numerical examples from materials science, simulating dendritic solidification.

2. Fourier representation of the solution

While (3) describes the solution to the heat equations (1) and (2), significant advantage can be obtained by
considering its Fourier transform. For this, we let
Ûðs; tÞ ¼
Z

Rd
eis�xUðx; tÞ dx; Uðx; tÞ ¼ 1

ð2pÞd
Z

Rd
e�is�xÛðs; tÞ ds: ð5Þ
It is obvious from (1), (2), and well known that Ûðs; tÞ satisfies the ordinary differential equation
dÛ
dt
ðs; tÞ ¼ �ksk2Ûðs; tÞ þ f̂ ðs; tÞ; ð6Þ
where
f̂ ðs; tÞ ¼
Z

Rd
eis�xf ðx; tÞ dx:
An elementary calculation shows that
Ûðs; tÞ ¼ e�ksk
2DtÛðs; t � DtÞ þ Uðs; t;DtÞ; ð7Þ
where
Uðs; t;DtÞ ¼
Z t

t�Dt
e�ksk

2ðt�sÞf̂ ðs; sÞ ds: ð8Þ
Thus, in the Fourier domain, history dependence is no longer an issue; Ûðs; tÞ is simply damped and updated at
each time step, as indicated in (7). While this is not a new observation, it is worth introducing some notation;
we will refer to Uðs; t;DtÞ in (8) as the update integral.
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Why, then, is this not the standard procedure for computing heat flow? The answer is that we need a quad-
rature rule for (8), we need to compute f̂ ðs; tÞ from f ðx; tÞ, and we need to compute the inverse transform to
obtain Uðx; tÞ from Ûðs; tÞ. The first task is easy, the second is a matter of finding a suitable ‘‘fast algorithm’’,
and the third is somewhat subtle. We will address these issues in order.

2.1. Quadratures for the update integral

The update integral (8) can be computed to high order accuracy using a standard product integration
approach [4], that is to say, polynomial approximation of f̂ ðs; tÞ as a function of time, followed by analytic
integration. Linear approximation of f̂ ðs; tÞ yields second order accuracy and the rule [11]
Uðs; t;DtÞ ¼ W 0ðs;DtÞf̂ ðs; tÞ þ W 1ðs;DtÞf̂ ðs; t � DtÞ; ð9Þ

W 0ðs;DtÞ ¼ e�z � 1þ z
z2

Dt; W 1ðs;DtÞ ¼ 1� e�z � ze�z

z2
Dt; ð10Þ
where z ¼ ksk2Dt.
For a cubic approximation of f̂ ðs; sÞ, yielding fourth order accuracy in time, we have
Uðs; t;DtÞ ¼ W 0ðs;DtÞf̂ ðs; tÞ þ W 1ðs;DtÞf̂ ðs; t � DtÞ þ W 2ðs;DtÞf̂ ðs; t � 2DtÞ þ W 3ðs;DtÞf̂ ðs; t � 3DtÞ;
ð11Þ
where
W 0ðs;DtÞ ¼ ð6þ 2z2 � 6zÞe�z þ ð6z3 � 11z2 � 6þ 12zÞ
6z4

Dt;

W 1ðs;DtÞ ¼ ð�z2 þ 2z3 þ 6� 4zÞe�z þ ð�6z2 � 6þ 10zÞ
�2z4

Dt;

W 2ðs;DtÞ ¼ ð2zþ 2z2 � 6Þe�z þ ð�8zþ 3z2 þ 6Þ
�2z4

Dt;

W 3ðs;DtÞ ¼ ðz
2 � 6Þe�z þ ð6þ 2z2 � 6zÞ

6z4
Dt:
A word of caution concerning the computation of the weights: if z is small, the formulae above are subject
to significant cancellation error. In that case, the weights can be computed by Taylor expansion of the expo-
nentials, carried out to a sufficient number of terms. A reasonable compromise is to switch from the analytic
expression to the Taylor series if z < 10�3. Four terms in the Taylor series are then sufficient for 12 digit
accuracy.

2.2. The forward transform

Given the quadrature rule (9) or (11), we still need to compute f̂ ðs; tÞ from the data f ðx; tÞ. The same trans-
form, of course, is also required at t = 0 to compute Ûðs; 0Þ from Uðx; 0Þ. Since we have assumed that the data
are supported in the box B ¼ ½�R=2;R=2�d , the Fourier transform is simply
f̂ ðs; tÞ ¼
Z R=2

�R=2

� � �
Z R=2

�R=2

eis�xf ðx; tÞ dx; ð12Þ
where x ¼ ðx1; . . . ; xdÞ; s ¼ ðs1; . . . ; sdÞ.
While we have not, as yet, determined where f̂ ðs; tÞ is to be computed, let us recall that the source

f ðx; tÞ 2 CkðBÞ. Thus, f̂ ðs; tÞ ¼ Oðksk�kÞ for large s. A straightforward calculation shows that if � is the error
tolerance, then evaluation of (12) needs to be done only for ksk 6 P , where P ¼ Oð1=�Þ

1
k. We will refer to P as

the high-frequency cutoff. This bounds the oscillatory behavior of the term eis�x in the integrand of (12).
Together with the fact that f ðx; tÞ is smooth, it follows that the trapezoidal rule applied to (12) with N points
will yield OðN�kÞ accuracy [4]. The error will begin decaying rapidly once N is of the order OðPRÞ, meaning
that the integrand is well resolved. The same reasoning holds for the initial values Ûðs; 0Þ. If f ðx; tÞ is given on
a uniform mesh with N points in each dimension, the trapezoidal rule yields
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f̂ ðs; tÞ � R
N

� �d XN

n1¼1

� � �
XN

nd¼1

eis�xn f ðxn; tÞ; ð13Þ
where xn ¼ ð�R=2þ n1ðR=NÞ; . . . ;�R=2þ ndðR=NÞÞ.
It remains only to determine the actual nodes in the Fourier domain sj where we wish to obtain f̂ ðsj; tÞ and,

therefore, Ûðsj; tÞ.

2.3. The inverse transform

In order to compute the solution in physical space, we need to evaluate the inverse Fourier transform
Uðx; tÞ ¼ 1

ð2pÞd
Z

Rd
e�is�xÛðs; tÞ ds: ð14Þ
Thus, we need to devise a quadrature for (14).
As discussed above, since the data are smooth, we are justified in truncating the domain of integration in

the Fourier domain at ksk ¼ P ¼ Oð1=�Þ
1
k, with an error �. (If the data were band-limited at frequency P, of

course, then this truncation would introduce no error.) The real difficulty lies in developing an efficient rule for
the finite Fourier integral:
Uðx; tÞ � 1

ð2pÞd
Z
ksk<P

e�is�xÛðs; tÞ ds: ð15Þ
The problem of discretizing (15) was addressed in [10], where it was shown (in one dimension) that a mesh
which clustered toward the origin in s-space on dyadic intervals was capable of resolving the integrand for
all time to any desired precision �. Intuitively, the reason for this exponential clustering at the origin can

be understood from considering the Fourier transform of the free space Green’s function e�kxk
2=4t

ð4ptÞ
d
2

itself, namely

the function e�ksk
2t. For large t, this function is sharply peaked near s ¼ 0 and the accurate resolution of this

function is what ensures that the lowest frequency terms diffuse into the infinite region correctly.
A slight modification of Theorem 2.1 in [10] yields

Theorem 1 (adapted from [10]). Let ½a; b� be a dyadic interval of the form ½2j; 2jþ1�, let � > 0 be the desired

precision and let fs1; . . . ; sng and fw1; . . . ;wng be the nodes and weights for the n-point Gauss–Legendre

quadrature scaled to ½a; b�. Then,
Z b

a
eisxÛðs; tÞ ds�

Xn

k¼1

eiskxÛðsk; tÞwk

�����
����� 6

ffiffiffiffiffiffi
2p
p ðb� aÞffiffiffi

n
p Rðb� aÞ

2n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=�Þ

n

r" #2n

þOð�Þ ð16Þ
for jxj 6 R.

Note that, in the estimate (16), both terms in square brackets must be small for the quadrature to be accurate.
For the first term to be small, the number of nodes must scale like the length of the interval in s-space. The sec-
ond term is more interesting. It requires that there be at least a constant number of nodes on each interval, no

matter how small. It is this requirement that forces the exponential clustering of nodes toward the origin.

Corollary 1 (adapted from [10]). Let � > 0 be the desired precision, let Lmin ¼ � logð1=�Þ and let Lmax ¼
dlog Pe, where P is the high-frequency cutoff. Further, let fsj;1; . . . ; sj;nðjÞg and fwj;1; . . . ;wj;nðjÞg be the nodes and

weights for the n(j)-point Gauss–Legendre quadrature on the interval ½2j; 2jþ1�, where nðjÞ ¼ maxðR2jþ3=2;
8 logð1=�ÞÞ. Then, in one space dimension,
Z

jsj<P
e�is�xÛðs; tÞ ds�

XLmax

j¼Lmin

XnðjÞ
k¼1

ðeisj;k x þ e�isj;k xÞÛðsj;k; tÞwj;k

�����
����� ¼ Oð�Þ ð17Þ
for jxj 6 R.

We will denote by N 1 ¼ N 1ð�;R; P Þ the total number of nodes required in one dimension. Using a tensor
product of this one-dimensional rule, OðN d

1Þ ¼ Oððlogð1=�Þ þ RP ÞdÞ nodes are required in d dimensions. We
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leave it to the reader to verify that if the trapezoidal rule were employed for (15), then OðRP
�
Þd nodes would be

required in order to be accurate for all time t > 0.

2.4. The nonuniform FFT

Let us denote by s1; . . . ; sN1
and w1; . . . ;wN1

the full set of one-dimensional quadrature nodes and weights
described in the preceding section. Then,
Uðx; tÞ � 1

ð2pÞd
XN1

j1¼1

� � �
XN1

jd¼1

e�isj�xÛðsj; tÞwj1
� � �wjd

; ð18Þ
where sj ¼ ðsj1
; . . . ; sjd

Þ.
The summation in (18) must be carried out for each evaluation point x. Direct evaluation at each of the Nd

points xn defined in Section 2.2 would require OðNd
1 � NdÞ work. Likewise, the sum (13) must be evaluated at

each of the Nd
1 spectral nodes, also requiring OðNd

1 � NdÞ work.
Since the fsjg are not uniformly spaced, the classical fast Fourier transform (FFT) cannot be applied to

accelerate this computation. In the last decade, however, suitable fast algorithms have been developed that
we refer to as non-uniform fast Fourier transforms (NUFFTs). Detailed descriptions and additional refer-
ences can be found in [2,6–9,21,24]. Like the FFT, these algorithms evaluate sums of the form (18) and
(13) in OððNd

1 þ NdÞ logðN d
1 þ N dÞÞ work, for any fixed precision.

3. The numerical scheme

With the full complement of tools in place, we can now provide an informal description of the fast recursive
marching (FRM) method. For kth order accuracy in time, we refer to the method as FRM(k).

The FRM(2) method

Step 1: Initialization

(a) Select time step Dt and number of time steps M.
(b) Select precision � for quadrature in Fourier domain.
(c) Obtain N1 quadrature nodes and weights in Fourier space for (18) according to Corollary 1.
(d) Compute weights W0, W1 from (10).

Step 2: Transform initial data

(a) Initialize Ûðs; 0Þ at all Nd

1 spectral nodes by computing the forward NUFFT of Uðx; 0Þ.
(b) Compute f̂ ðs; 0Þ at all N d

1 spectral nodes by computing the forward NUFFT of f ðx; 0Þ.
Step 3: For m ¼ 1; . . . ;M
(a) Compute f̂ ðs;mDtÞ at all Nd
1 spectral nodes by computing the forward NUFFT of f ðx;mDtÞ.

(b) Update Ûðs; tÞ according to (7).

Ûðs;mDtÞ ¼ e�ksk
2DtÛðs; ðm� 1ÞDtÞ þ W 0ðs;DtÞf̂ ðs;mDtÞ þ W 1ðs;DtÞf̂ ðs; ðm� 1ÞDtÞ

(c) Compute Uðx; tÞ from Ûðs; tÞ using (18) and the NUFFT.
The modifications necessary for the fourth order accurate FRM(4) method are straightforward.
Note that the total computational cost is of the order OðM � ðNd

1 þ NdÞ logðNd
1 þ NdÞÞ, since two NUFFT

calculations are required per time step. This is true for both FRM(2) and FRM(4), so that their execution
times are nearly identical. FRM(4) does, however, require twice as much storage since it is a four-level march-
ing scheme.

4. Numerical results

We first test the performance of the algorithm in two dimensions with a known exact solution U exaðx1; x2; tÞ,
constructed so that U exaðx1; x2; tÞ ¼ V ðx1; x2; tÞ þ W ðx1; x2; tÞ, where V corresponds to an initial potential and W
corresponds to a volume potential. For this, we let
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V ðx1; x2; tÞ ¼
e�
ðx1�0:05Þ2þðx2�0:15Þ2

4ðtþ0:01Þ

4pðt þ 0:01Þ :
Clearly V satisfies the homogeneous heat equation with initial data
V ðx1; x2; 0Þ ¼
e�
ðx1�0:05Þ2þðx2�0:15Þ2

4ð0:01Þ

4pð0:01Þ :
We let W satisfy the inhomogeneous heat equation
W t ¼ r2W þ f ;

W ðx1; x2; 0Þ ¼ 0;

f ðx1; x2; tÞ ¼ e�
ðx1�0:1Þ2þðx2�0:2Þ2

0:04 ð100 sinð5:1tÞ þ 200 cosð4:1tÞÞ:
To obtain the reference solution, W is computed via the volume potential formula (3), using analytic integra-
tion in space and high order Gauss–Legendre quadrature in time. We choose the computational domain to be
½�2; 2� � ½�2; 2�; both U exaðx1; x2; 0Þ and f ðx1; x2; tÞ are negligible outside of it. The constants in W are chosen
so that the L2 norm of the solution is approximately 1, meaning that the errors shown in the following table
and figures have the same order of magnitude as the relative errors.

In Fig. 1 we show results for the fourth order fast recursive marching scheme FRM(4), based on the cubic
product integration rule (8), for four different levels of error tolerance: tol ¼ 10�2; 10�3; 10�4; 10�7. The
parameters required for these tolerances are given in Table 1. We set the NUFFT tolerance to tol and run
the simulation until tf ¼ 10.

Fig. 1a shows that the convergence rate is consistent with a fourth order accurate scheme until the tolerance
level has been achieved, at which point no further reduction in error is obtained. The computation time
(Fig. 1a) is clearly linear in the number of time steps for each value of tol.

In Table 2 we compare the timings of FRM(4) and a fourth order in time, implicit finite difference method
(IFD4). For IFD4, we use the five point Laplacian in space and either a fourth order backward differentiation
formula (BDF) in time or a singly implicit Runge–Kutta method. The results are approximately the same for
these two marching schemes, so we only present results for the BDF approach. We chose to enforce homo-
geneous Neumann boundary conditions on the boundary of the computational domain, since this is often used
in dendritic solidification simulations [22,25], the application discussed below. Homogeneous Neumann con-
ditions are compatible with the use of FISHPACK [1] to solve the ‘‘modified’’ Helmholtz problem that arises
at each time step.
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Table 1
Parameter selection in FRM scheme

tol P N N1

10�2 12 21 72
10�3 18 31 80
10�4 25 41 152
10�7 35 51 224

The first column indicates the desired precision tol. The second, third and fourth columns indicate (for each dimension) the high-frequency
cutoff, the number of nodes in physical space and the number of nodes in Fourier space, corresponding to the selected value of tol. The
actual number of nodes used in this two-dimensional calculation are N2 and N2

1. In this particular case, N and N1 grow only logarith-
mically with tol, since the data are infinitely differentiable.

Table 2
Comparison of fourth order fast recursive marching scheme FRM(4) and a standard implicit finite difference method (IFD4)

tol ¼ 10�2 tol ¼ 10�3 tol ¼ 10�4 tol ¼ 10�7

FRM(4) IFD4 FRM(4) IFD4 FRM(4) IFD4 FRM(4) IFD4

t = 1
xmax 2 3 2 4 2 6 2 n/a
N2 ð21Þ2 ð61Þ2 ð31Þ2 ð321Þ2 ð41Þ2 ð1201Þ2 ð51Þ2 n/a
M 8 16 16 32 32 128 128 n/a
Total time 0.06 0.1 0.2 5 0.9 246 6 n/a
Time/step 0.01 0.01 0.01 0.15 0.03 2 0.05 n/a

t = 10
xmax 2 6 2 8 2 10 2 n/a
N2 ð21Þ2 ð121Þ2 ð31Þ2 ð641Þ2 ð41Þ2 ð2001Þ2 ð51Þ2 n/a
M 64 128 128 256 256 512 1024 n/a
Total time 0.3 2 1 111 7 2374 50 n/a
Time/step 0.01 0.02 0.01 0.43 0.03 4.6 0.05 n/a

t = 100
xmax 2 10 2 15 2 n/a 2 n/a
N2 ð21Þ2 ð201Þ2 ð31Þ2 ð1201Þ2 ð41Þ2 n/a ð51Þ2 n/a
M 512 1024 1024 2048 2048 n/a 16,384 n/a
Total time 3 38 10 2889 55 n/a 828 n/a
Time/step 0.01 0.04 0.01 1.4 0.03 n/a 0.05 n/a

For IFD4, entries marked by ‘‘n/a’’ means that we were not able to compute a solution due to memory constraints (see text for
explanation).
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We present results for the same four levels of error tolerance as before, at three different final times,
tf ¼ 1; 10; 100. The number of discretization points in physical space is N 2 and the number of time steps
is M. The L2 errors are computed at t ¼ tf on the domain ½�2; 2� � ½�2; 2�. For each method, the computa-
tional domain is ½�xmax; xmax� � ½�xmax; xmax�. For FRM(4), since the initial data and the source are both local-
ized to ½�2; 2� � ½�2; 2�, the computational domain can remain ½�2; 2� � ½�2; 2� for all four levels of tolerance
for all time. But with IFD4, the computational domain grows larger with larger tf and smaller tol, since Neu-
mann conditions are not the correct artificial boundary conditions on the square. Formally, it is easy to verify
that the domain must grow like Oð ffiffiffitf

p Þ in each linear dimension, so that the number of grid points must grow
like OðtfÞ in a two-dimensional simulation.

For tf ¼ 10 and error tolerances of 10�2, 10�3, 10�4, and 10�7, FRM(4) took 0.3, 1, 7, and 50 s, respec-
tively, on a laptop computer with a 2 GHz Pentium M processor. The finite difference method IFD4 took
2, 111, 2374 s for the first three error levels, respectively, and we were not able to compute a solution for
tol ¼ 10�7 due to memory constraints.

For tf ¼ 100 and the same four error tolerances, FRM(4) took 3, 10, 55, and 828 s, respectively. IFD4 took
38 and 2889 s for the first two error levels, and we were not able to compute a solution at the two higher levels
of accuracy. For the error level 10�3, the number of unknowns in physical space is ð31Þ2 for FRM(4) and it is
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ð1201Þ2 for IFD4, because IFD4 must expand the computational domain from ½�2; 2� � ½�2; 2� to the domain
½�15; 15� � ½�15; 15�.

4.1. Phase field model

We next illustrate the usefulness of the method in modeling the process of dendritic solidification in a pure
material in two dimensions. This example, and the following explanation of the model, were drawn from [22].
We have take the simple isotropic phase field model equations (rather than the more complicated anisotropic
model the authors derived in the original paper) which simulate dendritic growth into an under-cooled liquid.
The coupled system of heat equations governing the process are
ut �r2u ¼ � 30/2ð1� /Þ2

S
/t; ð19Þ

~�2

m
/t � ~�2r2/ ¼ /ð1� /Þ /� 1

2

� �
þ 30/2ð1� /Þ2~�aSu; ð20Þ
with unknowns /ðx; tÞ and uðx; tÞ. The quantity /ðx; tÞ is known as the phase field variable, with / � 0 and
/ � 1 corresponding to the bulk solid and liquid phases, respectively. The temperature is T ¼ T M þ DTu,
where T M is the equilibrium melting temperature and DT is the under-cooling (the difference between the melt-
ing temperature and the initial temperature at the boundary of the domain). At the start of the simulation, in
large areas of the computational domain (except where the initial seed configuration is placed) / � 1 and
u � �1. Thus, when we speak of the diffusion of / and u, we are really talking about the enlargement of
the support of /� 1 and u + 1, respectively. The parameter S ¼ cDT

L (c is the specific heat per unit volume,
L is the latent heat per unit volume) is the Stefan number or dimensionless under-cooling (the quantity L=c
is the unit of under-cooling), ~� controls the interface thickness, a and m are related to specific material prop-
erties and the length scale.

Typically, the coupled equations (19) and (20) are solved by a finite difference method, most often using a
backward differentiation formula in time [25]. For the nonlinear equation in (20), Newton’s method is used as
an inner iteration. This problem is posed in an infinite domain, so that artificially boundary conditions need to
be imposed at the computational boundary. Homogeneous Neumann conditions are frequently used for both
u and / [22,25].

A potential difficulty with using a finite difference method for this application lies in the difference in the
diffusion characteristics of u and / when the under-cooling is small. For example, there are materials for which
the typical under-cooling parameter is in the range S = 0.002–0.1 [19]. When this is the case, the support of
u + 1 grows to be much larger than the support of /� 1 as time increases. Thus, unless the computational
domain is made quite large, the support of u + 1 reaches the computational boundary early in the simulation,
and an incorrect boundary condition for u will pollute the result for both u and / as the simulation continues.
In [22] the authors were constrained to choose a large under-cooling, S ¼ 0:5, for their numerical simulations,
so that the supports of u + 1 and /� 1 stay on the same scale.

Since the fast recursive marching scheme solves the free space heat equation directly, we require only that
the supports of the initial data and the source are contained within the computational boundary. We can then
use it to solve (19) for u (or more precisely, u + 1). Note that the source for (19) is localized on the support of
/� 1 (it is 0 when / = 1). Thus, as long as the computational domain contains the support of /� 1 at all
times, the requirement that the source for u + 1 be contained in the computational domain at all times is sat-
isfied, even if u + 1 itself diffuses out. The computational domain, of course, also needs to contain the support
of u + 1 at the start of the simulation.

In this example, Eq. (20) is solved using the standard five-point stencil for the Laplacian and the implicit
Euler method in time, in order to illustrate as simply as possible that FRM is able to handle diffusion into an
unbounded medium in this more complex context. The coupling of a higher order BDF method with an effi-
cient Newton solver for Eq. (20) and FRM for (19) will be the topic of a separate paper.

With the notation of the previous section, we will use FRM(2) (with a linear approximation we automat-
ically get second order) for Eq. (19) and IFD1 for Eq. (20), where the nonlinear source terms are treated



Fig. 2. Comparison of solving the thermal field equation (19) using FRM(2) versus solving it using IFD1 and homogeneous Neumann
boundary conditions. The phase equation (20) is solved using IFD1 in both cases. Heat diffuses out correctly with FRM(2)/IFD1 but is
trapped with IFD1/IFD1.
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explicitly – that is, their value is taken at time t when marching from time t to t þ Dt. The resulting Helmholtz
equation from IDF1 is solved using FISHPACK [1], which uses cyclic reduction for separable PDEs.

Numerical results are shown in Fig. 2 with the time step Dt ¼ 0:0025. The relevant parameters are S = 0.05,
which is considered low, a = 400, m = 0.035, ~� ¼ 0:025. In the first row of Fig. 2, we show the contour plots of
u and / at various times, where IFD1 is used to solve both Eqs. (19) and (20), using the computational domain
½�2:5; 2:5� � ½�2:5; 2:5�. The background color (or grayscale) plot corresponds to field values of u on the com-
putational domain. The black lines are contour lines for /, corresponding to the values 0.01, 0.1, 0.5, 0.99
(outermost and thickest), respectively. Again, / � 0 represents bulk solid and / � 1 represents bulk liquid.
In the second row of Fig. 2 we show the (converged) results from using FRM(2) for Eq. (19) and IDF1 for
Eq. (20), on the computational domain ½�2:5; 2:5� � ½�2:5; 2:5�.

It is easy to see that, when the thermal field is computed with IFD1 using simple Neumann boundary con-
ditions, the heat is trapped at the boundaries and the simulation is no longer accurate even at t = 2 (Fig. 2b). If
it is computed with FRM(2), heat diffuses out of the computational domain correctly and simulation can con-
tinue until the solidification front reaches the computational boundary (Fig. 2f).

In this example, both FRM(2) and IFD1 use the same number of discretization points in physical space,
N 2 ¼ 1002. The computational time of FRM(2) is between 4 and 8 times that of IFD1. Both have the CPU
time estimate of OðN 2 log NÞ per time step, but the present FRM implementation has a larger constant pre-
factor associated with the Oð�Þ notation. This is a small increase when compared to the additional work that
would be required if the computational domain were enlarged to ensure accuracy in the IFD1 calculation.

5. Conclusions and generalizations

We have described the fast recursive marching method, a simple Fourier-based method for the solution of
the heat equation in free space with smooth initial data and a smooth source term. It allows for efficient and
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accurate long-time simulations without the need for artificial boundary conditions on a finite computational
domain. The convergence theory can be stated trivially – the error in the solution is the quadrature error in
computing the space–time integral (3). The CPU time of the method is nearly optimal, requiring OðN 2M log NÞ
work for M time steps, with N2 points in the spatial discretization. There are a number of ways in which the
present implementation can be optimized, and we mention a few. Inspection of the data in the preceding sec-
tion shows that the number of points in the spectral representation, N1, is larger than N by a small constant.
More careful analysis of the relation between P, N and N1 can reduce this constant, as can improvements in
the clustering quadrature method discussed in Section 2. Finally, the CPU time per step is dominated by the
NUFFT and improvements in that algorithm translate into improvements in any FRM scheme.

In subsequent works, we will describe the extension of the present scheme to the case of discontinuous
source data and/or complex geometry. This will involve the full machinery described in [10,12]. More precisly,
heat potentials, such as the volume potential in (3), are decomposed into a ‘‘history’’ part uH and a ‘‘local
part’’ uL, according to
uðx; tÞ ¼
Z t

0

Z
Rd

kðx� y; t � sÞf ðy; sÞ dy ds ¼ uHðx; tÞ þ uLðx; tÞ;
where
uHðx; tÞ ¼
Z t�d

0

Z
Rd

kðx� y; t � sÞf ðy; sÞ dy ds;

uLðx; tÞ ¼
Z t

t�d

Z
Rd

kðx� y; t � sÞf ðy; sÞ dy ds:
The spectral representation is used only for uH and a quadrature approximation is used for uL. Layer poten-
tials are decomposed in the same manner.

The full set of tools will allow for the construction of fast, explicit, and unconditionally stable solvers for
the heat equation in interior or exterior domains with complex boundaries.
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